3.245 \(\int \frac{x^7}{(d+e x^2) (a+c x^4)^2} \, dx\)

Optimal. Leaf size=150 \[ \frac{\sqrt{a} e \left (a e^2+3 c d^2\right ) \tan ^{-1}\left (\frac{\sqrt{c} x^2}{\sqrt{a}}\right )}{4 c^{3/2} \left (a e^2+c d^2\right )^2}+\frac{a \left (d-e x^2\right )}{4 c \left (a+c x^4\right ) \left (a e^2+c d^2\right )}-\frac{d^3 \log \left (d+e x^2\right )}{2 \left (a e^2+c d^2\right )^2}+\frac{d^3 \log \left (a+c x^4\right )}{4 \left (a e^2+c d^2\right )^2} \]

[Out]

(a*(d - e*x^2))/(4*c*(c*d^2 + a*e^2)*(a + c*x^4)) + (Sqrt[a]*e*(3*c*d^2 + a*e^2)*ArcTan[(Sqrt[c]*x^2)/Sqrt[a]]
)/(4*c^(3/2)*(c*d^2 + a*e^2)^2) - (d^3*Log[d + e*x^2])/(2*(c*d^2 + a*e^2)^2) + (d^3*Log[a + c*x^4])/(4*(c*d^2
+ a*e^2)^2)

________________________________________________________________________________________

Rubi [A]  time = 0.246675, antiderivative size = 150, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.273, Rules used = {1252, 1647, 801, 635, 205, 260} \[ \frac{\sqrt{a} e \left (a e^2+3 c d^2\right ) \tan ^{-1}\left (\frac{\sqrt{c} x^2}{\sqrt{a}}\right )}{4 c^{3/2} \left (a e^2+c d^2\right )^2}+\frac{a \left (d-e x^2\right )}{4 c \left (a+c x^4\right ) \left (a e^2+c d^2\right )}-\frac{d^3 \log \left (d+e x^2\right )}{2 \left (a e^2+c d^2\right )^2}+\frac{d^3 \log \left (a+c x^4\right )}{4 \left (a e^2+c d^2\right )^2} \]

Antiderivative was successfully verified.

[In]

Int[x^7/((d + e*x^2)*(a + c*x^4)^2),x]

[Out]

(a*(d - e*x^2))/(4*c*(c*d^2 + a*e^2)*(a + c*x^4)) + (Sqrt[a]*e*(3*c*d^2 + a*e^2)*ArcTan[(Sqrt[c]*x^2)/Sqrt[a]]
)/(4*c^(3/2)*(c*d^2 + a*e^2)^2) - (d^3*Log[d + e*x^2])/(2*(c*d^2 + a*e^2)^2) + (d^3*Log[a + c*x^4])/(4*(c*d^2
+ a*e^2)^2)

Rule 1252

Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[x^((m
 - 1)/2)*(d + e*x)^q*(a + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, c, d, e, p, q}, x] && IntegerQ[(m + 1)/2]

Rule 1647

Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[(d +
 e*x)^m*Pq, a + c*x^2, x], f = Coeff[PolynomialRemainder[(d + e*x)^m*Pq, a + c*x^2, x], x, 0], g = Coeff[Polyn
omialRemainder[(d + e*x)^m*Pq, a + c*x^2, x], x, 1]}, Simp[((a*g - c*f*x)*(a + c*x^2)^(p + 1))/(2*a*c*(p + 1))
, x] + Dist[1/(2*a*c*(p + 1)), Int[(d + e*x)^m*(a + c*x^2)^(p + 1)*ExpandToSum[(2*a*c*(p + 1)*Q)/(d + e*x)^m +
 (c*f*(2*p + 3))/(d + e*x)^m, x], x], x]] /; FreeQ[{a, c, d, e}, x] && PolyQ[Pq, x] && NeQ[c*d^2 + a*e^2, 0] &
& LtQ[p, -1] && ILtQ[m, 0]

Rule 801

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Int[ExpandIntegrand[(
(d + e*x)^m*(f + g*x))/(a + c*x^2), x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[c*d^2 + a*e^2, 0] && Integer
Q[m]

Rule 635

Int[((d_) + (e_.)*(x_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Dist[d, Int[1/(a + c*x^2), x], x] + Dist[e, Int[x/
(a + c*x^2), x], x] /; FreeQ[{a, c, d, e}, x] &&  !NiceSqrtQ[-(a*c)]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 260

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rubi steps

\begin{align*} \int \frac{x^7}{\left (d+e x^2\right ) \left (a+c x^4\right )^2} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{x^3}{(d+e x) \left (a+c x^2\right )^2} \, dx,x,x^2\right )\\ &=\frac{a \left (d-e x^2\right )}{4 c \left (c d^2+a e^2\right ) \left (a+c x^4\right )}-\frac{\operatorname{Subst}\left (\int \frac{-\frac{a^2 d e}{c d^2+a e^2}-\frac{a \left (2 c d^2+a e^2\right ) x}{c d^2+a e^2}}{(d+e x) \left (a+c x^2\right )} \, dx,x,x^2\right )}{4 a c}\\ &=\frac{a \left (d-e x^2\right )}{4 c \left (c d^2+a e^2\right ) \left (a+c x^4\right )}-\frac{\operatorname{Subst}\left (\int \left (\frac{2 a c d^3 e}{\left (c d^2+a e^2\right )^2 (d+e x)}-\frac{a \left (3 a c d^2 e+a^2 e^3+2 c^2 d^3 x\right )}{\left (c d^2+a e^2\right )^2 \left (a+c x^2\right )}\right ) \, dx,x,x^2\right )}{4 a c}\\ &=\frac{a \left (d-e x^2\right )}{4 c \left (c d^2+a e^2\right ) \left (a+c x^4\right )}-\frac{d^3 \log \left (d+e x^2\right )}{2 \left (c d^2+a e^2\right )^2}+\frac{\operatorname{Subst}\left (\int \frac{3 a c d^2 e+a^2 e^3+2 c^2 d^3 x}{a+c x^2} \, dx,x,x^2\right )}{4 c \left (c d^2+a e^2\right )^2}\\ &=\frac{a \left (d-e x^2\right )}{4 c \left (c d^2+a e^2\right ) \left (a+c x^4\right )}-\frac{d^3 \log \left (d+e x^2\right )}{2 \left (c d^2+a e^2\right )^2}+\frac{\left (c d^3\right ) \operatorname{Subst}\left (\int \frac{x}{a+c x^2} \, dx,x,x^2\right )}{2 \left (c d^2+a e^2\right )^2}+\frac{\left (a e \left (3 c d^2+a e^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{a+c x^2} \, dx,x,x^2\right )}{4 c \left (c d^2+a e^2\right )^2}\\ &=\frac{a \left (d-e x^2\right )}{4 c \left (c d^2+a e^2\right ) \left (a+c x^4\right )}+\frac{\sqrt{a} e \left (3 c d^2+a e^2\right ) \tan ^{-1}\left (\frac{\sqrt{c} x^2}{\sqrt{a}}\right )}{4 c^{3/2} \left (c d^2+a e^2\right )^2}-\frac{d^3 \log \left (d+e x^2\right )}{2 \left (c d^2+a e^2\right )^2}+\frac{d^3 \log \left (a+c x^4\right )}{4 \left (c d^2+a e^2\right )^2}\\ \end{align*}

Mathematica [A]  time = 0.115127, size = 142, normalized size = 0.95 \[ \frac{\sqrt{c} \left (a \left (d-e x^2\right ) \left (a e^2+c d^2\right )-2 c d^3 \left (a+c x^4\right ) \log \left (d+e x^2\right )+c d^3 \left (a+c x^4\right ) \log \left (a+c x^4\right )\right )+\sqrt{a} e \left (a+c x^4\right ) \left (a e^2+3 c d^2\right ) \tan ^{-1}\left (\frac{\sqrt{c} x^2}{\sqrt{a}}\right )}{4 c^{3/2} \left (a+c x^4\right ) \left (a e^2+c d^2\right )^2} \]

Antiderivative was successfully verified.

[In]

Integrate[x^7/((d + e*x^2)*(a + c*x^4)^2),x]

[Out]

(Sqrt[a]*e*(3*c*d^2 + a*e^2)*(a + c*x^4)*ArcTan[(Sqrt[c]*x^2)/Sqrt[a]] + Sqrt[c]*(a*(c*d^2 + a*e^2)*(d - e*x^2
) - 2*c*d^3*(a + c*x^4)*Log[d + e*x^2] + c*d^3*(a + c*x^4)*Log[a + c*x^4]))/(4*c^(3/2)*(c*d^2 + a*e^2)^2*(a +
c*x^4))

________________________________________________________________________________________

Maple [A]  time = 0.017, size = 260, normalized size = 1.7 \begin{align*} -{\frac{{a}^{2}{e}^{3}{x}^{2}}{4\, \left ( a{e}^{2}+c{d}^{2} \right ) ^{2} \left ( c{x}^{4}+a \right ) c}}-{\frac{ae{x}^{2}{d}^{2}}{4\, \left ( a{e}^{2}+c{d}^{2} \right ) ^{2} \left ( c{x}^{4}+a \right ) }}+{\frac{{a}^{2}d{e}^{2}}{4\, \left ( a{e}^{2}+c{d}^{2} \right ) ^{2} \left ( c{x}^{4}+a \right ) c}}+{\frac{a{d}^{3}}{4\, \left ( a{e}^{2}+c{d}^{2} \right ) ^{2} \left ( c{x}^{4}+a \right ) }}+{\frac{{d}^{3}\ln \left ( c{x}^{4}+a \right ) }{4\, \left ( a{e}^{2}+c{d}^{2} \right ) ^{2}}}+{\frac{{a}^{2}{e}^{3}}{4\, \left ( a{e}^{2}+c{d}^{2} \right ) ^{2}c}\arctan \left ({c{x}^{2}{\frac{1}{\sqrt{ac}}}} \right ){\frac{1}{\sqrt{ac}}}}+{\frac{3\,e{d}^{2}a}{4\, \left ( a{e}^{2}+c{d}^{2} \right ) ^{2}}\arctan \left ({c{x}^{2}{\frac{1}{\sqrt{ac}}}} \right ){\frac{1}{\sqrt{ac}}}}-{\frac{{d}^{3}\ln \left ( e{x}^{2}+d \right ) }{2\, \left ( a{e}^{2}+c{d}^{2} \right ) ^{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^7/(e*x^2+d)/(c*x^4+a)^2,x)

[Out]

-1/4/(a*e^2+c*d^2)^2/(c*x^4+a)*a^2*e^3/c*x^2-1/4/(a*e^2+c*d^2)^2/(c*x^4+a)*a*e*x^2*d^2+1/4/(a*e^2+c*d^2)^2/(c*
x^4+a)*a^2*d/c*e^2+1/4/(a*e^2+c*d^2)^2/(c*x^4+a)*a*d^3+1/4*d^3*ln(c*x^4+a)/(a*e^2+c*d^2)^2+1/4/(a*e^2+c*d^2)^2
/c/(a*c)^(1/2)*arctan(c*x^2/(a*c)^(1/2))*a^2*e^3+3/4/(a*e^2+c*d^2)^2/(a*c)^(1/2)*arctan(c*x^2/(a*c)^(1/2))*a*d
^2*e-1/2*d^3*ln(e*x^2+d)/(a*e^2+c*d^2)^2

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^7/(e*x^2+d)/(c*x^4+a)^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 39.6776, size = 922, normalized size = 6.15 \begin{align*} \left [\frac{2 \, a c d^{3} + 2 \, a^{2} d e^{2} - 2 \,{\left (a c d^{2} e + a^{2} e^{3}\right )} x^{2} +{\left (3 \, a c d^{2} e + a^{2} e^{3} +{\left (3 \, c^{2} d^{2} e + a c e^{3}\right )} x^{4}\right )} \sqrt{-\frac{a}{c}} \log \left (\frac{c x^{4} + 2 \, c x^{2} \sqrt{-\frac{a}{c}} - a}{c x^{4} + a}\right ) + 2 \,{\left (c^{2} d^{3} x^{4} + a c d^{3}\right )} \log \left (c x^{4} + a\right ) - 4 \,{\left (c^{2} d^{3} x^{4} + a c d^{3}\right )} \log \left (e x^{2} + d\right )}{8 \,{\left (a c^{3} d^{4} + 2 \, a^{2} c^{2} d^{2} e^{2} + a^{3} c e^{4} +{\left (c^{4} d^{4} + 2 \, a c^{3} d^{2} e^{2} + a^{2} c^{2} e^{4}\right )} x^{4}\right )}}, \frac{a c d^{3} + a^{2} d e^{2} -{\left (a c d^{2} e + a^{2} e^{3}\right )} x^{2} +{\left (3 \, a c d^{2} e + a^{2} e^{3} +{\left (3 \, c^{2} d^{2} e + a c e^{3}\right )} x^{4}\right )} \sqrt{\frac{a}{c}} \arctan \left (\frac{c x^{2} \sqrt{\frac{a}{c}}}{a}\right ) +{\left (c^{2} d^{3} x^{4} + a c d^{3}\right )} \log \left (c x^{4} + a\right ) - 2 \,{\left (c^{2} d^{3} x^{4} + a c d^{3}\right )} \log \left (e x^{2} + d\right )}{4 \,{\left (a c^{3} d^{4} + 2 \, a^{2} c^{2} d^{2} e^{2} + a^{3} c e^{4} +{\left (c^{4} d^{4} + 2 \, a c^{3} d^{2} e^{2} + a^{2} c^{2} e^{4}\right )} x^{4}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^7/(e*x^2+d)/(c*x^4+a)^2,x, algorithm="fricas")

[Out]

[1/8*(2*a*c*d^3 + 2*a^2*d*e^2 - 2*(a*c*d^2*e + a^2*e^3)*x^2 + (3*a*c*d^2*e + a^2*e^3 + (3*c^2*d^2*e + a*c*e^3)
*x^4)*sqrt(-a/c)*log((c*x^4 + 2*c*x^2*sqrt(-a/c) - a)/(c*x^4 + a)) + 2*(c^2*d^3*x^4 + a*c*d^3)*log(c*x^4 + a)
- 4*(c^2*d^3*x^4 + a*c*d^3)*log(e*x^2 + d))/(a*c^3*d^4 + 2*a^2*c^2*d^2*e^2 + a^3*c*e^4 + (c^4*d^4 + 2*a*c^3*d^
2*e^2 + a^2*c^2*e^4)*x^4), 1/4*(a*c*d^3 + a^2*d*e^2 - (a*c*d^2*e + a^2*e^3)*x^2 + (3*a*c*d^2*e + a^2*e^3 + (3*
c^2*d^2*e + a*c*e^3)*x^4)*sqrt(a/c)*arctan(c*x^2*sqrt(a/c)/a) + (c^2*d^3*x^4 + a*c*d^3)*log(c*x^4 + a) - 2*(c^
2*d^3*x^4 + a*c*d^3)*log(e*x^2 + d))/(a*c^3*d^4 + 2*a^2*c^2*d^2*e^2 + a^3*c*e^4 + (c^4*d^4 + 2*a*c^3*d^2*e^2 +
 a^2*c^2*e^4)*x^4)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**7/(e*x**2+d)/(c*x**4+a)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.10852, size = 301, normalized size = 2.01 \begin{align*} -\frac{d^{3} e \log \left ({\left | x^{2} e + d \right |}\right )}{2 \,{\left (c^{2} d^{4} e + 2 \, a c d^{2} e^{3} + a^{2} e^{5}\right )}} + \frac{d^{3} \log \left (c x^{4} + a\right )}{4 \,{\left (c^{2} d^{4} + 2 \, a c d^{2} e^{2} + a^{2} e^{4}\right )}} + \frac{{\left (3 \, a c d^{2} e + a^{2} e^{3}\right )} \arctan \left (\frac{c x^{2}}{\sqrt{a c}}\right )}{4 \,{\left (c^{3} d^{4} + 2 \, a c^{2} d^{2} e^{2} + a^{2} c e^{4}\right )} \sqrt{a c}} - \frac{c^{2} d^{3} x^{4} + a c d^{2} x^{2} e + a^{2} x^{2} e^{3} - a^{2} d e^{2}}{4 \,{\left (c^{3} d^{4} + 2 \, a c^{2} d^{2} e^{2} + a^{2} c e^{4}\right )}{\left (c x^{4} + a\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^7/(e*x^2+d)/(c*x^4+a)^2,x, algorithm="giac")

[Out]

-1/2*d^3*e*log(abs(x^2*e + d))/(c^2*d^4*e + 2*a*c*d^2*e^3 + a^2*e^5) + 1/4*d^3*log(c*x^4 + a)/(c^2*d^4 + 2*a*c
*d^2*e^2 + a^2*e^4) + 1/4*(3*a*c*d^2*e + a^2*e^3)*arctan(c*x^2/sqrt(a*c))/((c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*
e^4)*sqrt(a*c)) - 1/4*(c^2*d^3*x^4 + a*c*d^2*x^2*e + a^2*x^2*e^3 - a^2*d*e^2)/((c^3*d^4 + 2*a*c^2*d^2*e^2 + a^
2*c*e^4)*(c*x^4 + a))